Hot Water Treatment of Beef Trim

This article written by Dr. Reynold Bergen, BCRC Science Director, originally appeared in the March 2015 issue of Canadian Cattlemen magazine and is reprinted on the BCRC Blog with permission of the publisher.


Click to view digital issue
Combating bacteria would be simple if they stayed on the surface of beef. In that case, nearly any spray or wash could contact and kill the bacteria or wash them off. But beef isn’t smooth. Shallow cuts and cracks crisscrossing the meat surface can hide and protect bacteria. Killing these hidden bacteria is not simple. Irradiation would work, but isn’t approved for use in Canada yet. Organic acid washes and sprays may not reach the bacteria hidden in these cracks, or the acids may be neutralized by the meat proteins before bacteria can be killed. To kill these bacteria, food safety interventions need to penetrate a short distance into the meat surface. This is particularly important for beef trim (the small pieces of fat and meat that are removed as the carcass is processed into smaller cuts) that is used for hamburger. The late Dr. Colin Gill of AAFC Lacombe showed that exposing beef trim to extremely hot water essentially “cooks” the top few millimeters, and kills up to 90% of bacteria.

This raises an interesting dilemma. Consumers want safe beef, but they also Continue reading

Flipping for Mechanically Tenderized Beef

This article written by Dr. Reynold Bergen, BCRC Science Director, originally appeared in the October 2014 issue of Canadian Cattlemen magazine and is reprinted on the BCRC Blog with permission of the publisher.


Click to view digital issue
All food surfaces carry bacteria, including steaks and roasts. Because beef cooks from the outside in, the outer surface is exposed to higher temperatures for a longer time than the inside of the beef. The heat of cooking will inactivate bacteria as long as they remain on the outside of cuts, and the surface is cooked thoroughly. That’s why steaks and roasts can be eaten rare. In ground beef, microbes from the surface get mixed throughout the beef, so consumers are encouraged to cook ground beef to an internal temperature of 71oC.

Mechanical tenderization pierces beef with small blades or fine needles. This cuts the connective tissue and makes the beef more tender. This improves the eating quality of lower cost, tougher beef cuts. Price and tenderness are two of the major drivers of consumer buying behavior and eating satisfaction, so mechanical tenderization has proven quite useful. Approximately 20% of Canadian beef is mechanically tenderized.

But if there are Continue reading

Bug Spray for Beef?

This article written by Dr. Reynold Bergen, BCRC Science Director, originally appeared in the January 2014 issue of Canadian Cattlemen magazine and is reprinted with permission.

The last two research columns have been about technologies and best practices that large and small beef packers can adopt to avoid bacterial contamination during dressing of beef carcasses, and to avoid bacterial (re)contamination of beef cuts and trim during further processing. Ground beef is more of a food safety risk than other cuts, for reasons discussed in last month’s column. As a result, Dr. Colin Gill, Xianqin Yang, Madhu Badoni and Mohamed Youssef of AAFC’s Lacombe Research Station have studied whether lactic acid sprays can combat E. coli in beef trim. Continue reading

Better Housekeeping



This article written by Dr. Reynold Bergen, BCRC Science Director, originally appeared in the December 2013 issue of Canadian Cattlemen magazine and is reprinted with permission.

Last month’s column discussed a Beef Science Cluster study conducted by Dr. Colin Gill, Xianqin Yang, Madhu Badoni and Mohamed Youssef of AAFC’s Lacombe Research Station. These researchers found that both large and small packing plants can produce dressed beef carcasses with very few E. coli bacteria, even though they use very different food safety interventions and strategies. But E. coli-related recalls still happen occasionally. How does beef get contaminated when the carcasses carry so few E. coli? Two papers published by this research team (Journal of Food Protection 75:144-149 and Food Control 31:166-171) help explain how this can happen.

What They Did: This research was done in a large packing plant that Continue reading

More Than One Way to Skin a Cow

This article written by Dr. Reynold Bergen, BCRC Science Director, originally appeared in the November 2013 issue of Canadian Cattlemen magazine and is reprinted with permission.



This time last year, Canada’s beef industry was coping with the Lakeside-XL beef recall. That event focused attention on the safety of Canadian beef, and the practices that the beef packing industry uses to manage food safety risks.

Since the late 1990’s, North America’s beef processors have used Hazard Analysis Critical Control Point plans (also called HACCP, and pronounced “hassip”) to improve food safety. A HACCP plan identifies food safety hazards, identifies the steps that can adequately control those hazards, actively monitors the controls that are implemented, outlines how to fix problems that arise, develops ways to verify that these management practices are working, and keeps records to document that these steps are being done right. Not all packing plants are designed and built from the same blueprint, so each plant has unique challenges. Continue reading

How do carcass processing procedures impact food safety?



Canadian beef packing plants have progressively and effectively modified their processes over time to reduce the levels of harmful bacteria contamination on product. Studies have shown that carcass pasteurizing is generally effective in commercial practice, but cuts and trim carry more E. coli than beef in its whole carcass state. Therefore beef is being contaminated during carcass breaking. What’s the source of the bacteria?

A recently-completed research project, funded by the National Check-off and Canada’s Beef Science Cluster, worked to determine how Continue reading