Managing Mycoplasma

Project Code: 7486
Completed: September 2009

Project Title: Does Bovine Respiratory Disease Treatment Strategy Influence the Expression of Chronic Pneumonia and Polyarthritis Syndrome?

Researchers:
Dr. Steve Hendrick

Background
The Mycoplasma bovis bacterium is involved in bovine respiratory disease complex (BRD) and plays a role in chronic pneumonia and polyarthritis syndrome (CPPS). This disease is responsible for 25-40% of feedlot calf mortality and has surpassed shipping fever as the leading cause of death loss in high-risk fall-placed feedlot calves in Canada.

There are several theories to explain why CPPS has increased in prevalence. Undoubtedly the bacterium respiratory disease (BRD) is now managed differently than in the past. Animals are often removed to their home pens immediately after being treated rather than staying in the sick pen for a few days. This means that their respiratory tract is not properly cleansed to determine whether they have responded to treatment. Secondly, the predominant use of long-acting antimicrobials has helped to reduce the risk of outbreaks early in the feeding period. These products may eliminate other lung pathogens such as Mannheimia haemolytica and Pasteurella multocida and create an opportunity for M. bovis to take over and cause CPPS. The BVD virus may also play a role. It suppresses the immune system of cattle, so the risk of CPPS may also be higher when persistently BVD-infected calves are present.

Objectives
This research project examined the effects of two different management practices on the occurrence of CPPS: 1) the prophylactic use of antimicrobials in newly arrived feedlot calves to prevent illness and 2) the therapeutic use of antimicrobials to treat sick calves.

What they did
A total of 3,769 auction-mart calves were placed in a Saskatchewan feedlot in the fall of 2007 and 2008. Calves were implanted, dewormed and vaccinated with 8-way clostridial, IBR, PI-3, BVD, BRSSV, and BRD on arrival. An ear notch was collected from each animal to test for BVD, and a swabs was collected from the throat to test for M. bovis.

Calves were assigned to one of four experimental treatment groups. Preventative antimicrobial use on arrival was compared by giving oxytetracycline to one group of calves, a second group was not given any tetracycline. Those two groups were then divided to compare disease treatment strategies in sick calves. Half of the calves that developed respiratory disease were given florfenicol subcutaneously and returned to the pen. The other half were given florfenicol intramuscularly, kept in a sick pen, given another 3ml after 48 hours, and returned to their home pens.

A second nasal swab was collected from all animals that became sick, and nasal, lung, and joint samples were collected from all animals that died. M. bovis was cultured from these samples and DNA was compared to see whether the same strain of M. bovis was consistently responsible for pneumonia and arthritis in all cattle. Those samples were also tested for resistance to 10 different antimicrobials.

What they learned
Overall BRD treatment rates (13%) and mortality rates (3.9%) were lower than expected. The BVD virus was detected in only 4 calves (0.1%). Preventative and disease treatment: BRD treatment rates were 30% higher for calves that did not receive oxytetracycline on arrival than for calves that did receive oxytetracycline on arrival. Preventative use of oxytetracycline did not reduce BRD re-treatment, arthritis treatment, or mortality rates. Rates of BRD treatment, BRD re-treatment, arthritis treatment, and mortality were the same in calves that were treated and returned to the pen as those that were treated and held in the sick pen for 48 hours. Differences between the preventative and disease treatment groups would likely have been more obvious if BRD incidence had been higher.

M. bovis prevalence: Fewer than 5% of calves were infected with M. bovis when they arrived at the feedlot. Approximately one third of cattle that were treated and returned were infected with M. bovis. Over half of the cattle that died were infected with M. bovis at the time they were treated, and close to two-thirds were infected by the time they died.

M. bovis strains: A total of 54 different strains of M. bovis were identified. Those strains could be grouped into 20 clusters of strains that shared more than 85% genetic similarity. Only these clusters were found in both years of the study. This indicates that no particular strain is to blame for CPPS.

Antimicrobial resistance: Because M. bovis does not have a cell wall, it is naturally resistant to some antimicrobials such as ampicillin (Polysporin), cephalosporins (Bac trom / Spectram), and chloramphenicol (Clenbuterol). In contrast, all strains of M. bovis were equally susceptible to oxy- or chloramphenicol, streptomycin (Baytril), and tilmicosin (Micotil). This suggests that antimicrobial resistance is not responsible for the increasing incidence of CPPS in feedlot cattle.

What it means
M. bovis may be an “opportunistic pathogen.” For example, healthy animals can successfully clear an M. bovis infection. But if the animal is weakened by stress, M. bovis may cause respiratory problems started by other pathogens. Alternatively, if shipping fever is being treated more successfully, and animals may survive this acute pneumonia with damaged lungs, which could provide an opportunity for M. bovis to establish an infection.

Proudly Funded By:
The Beef Cattle Research Council, a division of the Canadian Cattlemen’s Association, sponsors research and technology development and adoption in support of the Canadian beef industry’s vision to be recognized as a preferred supplier of healthy, high quality beef, cattle and genetics.

For More Information Contact:
Beef Cattle Research Council
PO Box 8051, Stn A, M. D.
Calgary, AB T2E 7H7
Telephone: 1-800-275-8558
Fax: (403) 274-5686
info@beefresearch.ca